講座題目:Portfolio Choice with Subset Combination of Characteristics
地點:線上
時間:2021年12月7日(周二)12:30–13:30
主講人:吳軻
主講人簡介:
吳軻,中國人民大學(xué)財政金融學(xué)院副教授,博士生導(dǎo)師,中國人民大學(xué)“杰出學(xué)者”青年學(xué)者。吳軻博士2006年在對外經(jīng)濟(jì)貿(mào)易大學(xué)取得經(jīng)濟(jì)學(xué)和商務(wù)英語雙學(xué)士學(xué)位,2008年獲得印第安納大學(xué)經(jīng)濟(jì)學(xué)碩士學(xué)位,2015年獲得埃默里大學(xué)經(jīng)濟(jì)學(xué)博士學(xué)位。2011年至2014年,他在美聯(lián)儲亞特蘭大分行任兼職研究分析師,2015年9月起任教于中國人民大學(xué)漢青研究院,講授實證資產(chǎn)定價、金融科技、金融大數(shù)據(jù)分析等課程。他的研究主要集中于實證資產(chǎn)定價、投資組合管理、金融計量及機(jī)器學(xué)習(xí)方法等,研究成果發(fā)表在Journal of Financial and Quantitative Analysis, Journal of Applied Econometrics等國際一流期刊,并獲得了國家自然科學(xué)基金青年基金和面上項目的資助。
講座內(nèi)容簡介:
This paper proposes a novel portfolio strategy over individual stocks based on subset combination of a large number of characteristics documented to predict return. Akin to the forecast combination literature, we exploit all characteristics by combining parametric rules that include a particular subset of characteristics holding fixed the number of inclusions. The choice of subset dimension governs the shrinkage of estimated parametric rule that includes all characteristics and trades off the efficiency and robustness of portfolio decision. Empirical application to US individual stocks using 92 characteristics shows that subset combination strategy achieves desirable return properties. It outperforms characteristics-sparse strategies based on machine learning and alternative strategies based on principal component analysis. The subset combination strategy is adapted to both mean-variance and CRRA utility and its portfolio value remains in the presence of transaction costs and post-publication decay of anomalies.
會議方式:騰訊會議
會議ID:688 809 770